COORDINATE GEOMETRY 2 QUESTIONS (With detailed Solutions)

Coordinate Geometry 2 Questions

COORDINATE GEOMETRY 2 QUESTIONS

1. Conic Sections Problems

(a)
(i) Derive the equation of an ellipse.
(ii) A rod AB of length 15cm rests between two coordinate axes such that endpoint A lies on x-axis and endpoint B lies on y-axis. A point P is taken on the rod such that AP=6cm. Show that the locus of P is an ellipse and find its eccentricity.
(b)
(i) Show that the equation of normal at the point (a secθ, b tanθ) on the hyperbola x²/a² - y²/b² = 1 is ax sinθ + by - (a²+b²)tanθ = 0.
(ii) If e and e' are eccentricities of a hyperbola and its conjugate respectively, prove that 1/e² + 1/e'² = 1.
(c) The normal at point P(ap², 2ap) on a parabola meets x-axis at G. If H is the point such that PG = GH, find:
(i) Coordinates of G
(ii) Coordinates of H in terms of p
(iii) Show that H lies on the parabola y² = 4a(x-4a)
(d) Find the asymptotes of the hyperbola 4x² - 9y² = 36.

2. Coordinate Transformations

(a)
(i) Convert polar coordinates (4, π/6) to Cartesian coordinates.
(ii) Convert the equation y = x to polar form.
(b) For points T(acosθ, bsinθ) and S(-asinθ, bcosθ) on the ellipse x²/a² + y²/b² = 1:
(i) Show that (OT)² + (OS)² = a² + b² where O is the origin
(ii) Show that the midpoint of TS always lies on the curve 2x²/a² + 2y²/b² = 1
(c) For the parabola y² = 4x:
The normal at P(1,2) meets x-axis at G
D is midpoint of PG
A line through D parallel to y-axis meets x-axis at R and parabola at T
Prove that TN = PG where N is the foot of perpendicular from T to the directrix

3. Hyperbola and Ellipse Problems

(a) Find the equation of the hyperbola with foci at (±3√5, 0) and latus rectum length 8.
(b) A semi-elliptical arch is 8m wide and 2m high at the center. Find the height of the arch 1.5m from one end.
(c) For the parabola y² = 12x, find:
(i) Coordinates of the focus
(ii) Equation of the directrix
(iii) Length of latus rectum

4. Applications of Conic Sections

(a) A telephone wire hangs between two points P, Q 60m apart at the same level. The midpoint is 3m below PQ. Assuming it forms a parabola, find its equation.
(b) Find the equation of the ellipse with one focus at (6,0) that passes through (5√3, 4).
(c) Find the equations of tangent and normal at point P(a secθ, b tanθ) on the hyperbola x²/a² - y²/b² = 1.
(d)
(i) Sketch the polar curve r² = 4 sin2θ
(ii) Convert r = 4 tanθ secθ to Cartesian equation
Coordinate Geometry 2 Solutions

COORDINATE GEOMETRY 2 SOLUTIONS

1. Conic Sections Problems

(a)
(i) Derive the equation of an ellipse.
1. Definition: An ellipse is the locus of points whose sum of distances to two fixed points (foci) is constant.
2. Let foci be at (c,0) and (-c,0), and sum of distances be 2a.
3. For any point P(x,y): √[(x-c)²+y²] + √[(x+c)²+y²] = 2a
4. Rearrange and square both sides: √[(x-c)²+y²] = 2a - √[(x+c)²+y²]
5. Square again: (x-c)² + y² = 4a² - 4a√[(x+c)²+y²] + (x+c)² + y²
6. Simplify: cx + a² = a√[(x+c)²+y²]
7. Square again: c²x² + 2a²cx + a⁴ = a²x² + 2a²cx + a²c² + a²y²
8. Simplify: (a²-c²)x² + a²y² = a²(a²-c²)
9. Let b² = a²-c²: b²x² + a²y² = a²b²
Final Equation: x²/a² + y²/b² = 1
(ii) Rod AB problem
1. Let A be at (a,0), B at (0,b) with a² + b² = 15² = 225
2. Parametric equations for P (6cm from A): x = a(1 - t), y = bt where t = 6/15 = 0.4
3. Thus x = 0.6a, y = 0.4b ⇒ a = x/0.6, b = y/0.4
4. Substitute into a² + b² = 225: (x/0.6)² + (y/0.4)² = 225
5. Simplify: x²/81 + y²/36 = 1 (standard ellipse equation)
6. Eccentricity e = √(1 - b²/a²) = √(1 - 36/81) = √(45/81) = √5/3
Final Answer: Locus is ellipse x²/81 + y²/36 = 1 with e = √5/3 ≈ 0.7454
(b)
(i) Normal to hyperbola
1. Hyperbola equation: x²/a² - y²/b² = 1
2. Point P: (a secθ, b tanθ)
3. Derivative: 2x/a² - (2y/b²)(dy/dx) = 0 ⇒ dy/dx = (b²x)/(a²y)
4. Slope of tangent at P: m = (b²a secθ)/(a²b tanθ) = (b/a)cosecθ
5. Slope of normal: -1/m = -(a/b)sinθ
6. Equation of normal: y - b tanθ = -(a/b)sinθ(x - a secθ)
7. Multiply through by b: by - b² tanθ = -a sinθ x + a² sinθ secθ
8. Simplify: a x sinθ + b y = a² tanθ + b² tanθ = (a² + b²)tanθ
Final Equation: a x sinθ + b y - (a² + b²)tanθ = 0
(ii) Eccentricity relationship
1. For hyperbola x²/a² - y²/b² = 1: e = √(1 + b²/a²)
2. For conjugate hyperbola y²/b² - x²/a² = 1: e' = √(1 + a²/b²)
3. Compute 1/e² + 1/e'² = 1/(1 + b²/a²) + 1/(1 + a²/b²)
4. Let k = b²/a²: = 1/(1+k) + 1/(1+1/k) = 1/(1+k) + k/(1+k) = (1+k)/(1+k)
Final Proof: 1/e² + 1/e'² = 1
(c) Parabola normal problem
1. Parabola: y² = 4ax, point P(ap², 2ap)
2. Derivative: 2y dy/dx = 4a ⇒ dy/dx = 2a/y
3. Slope at P: m = 2a/(2ap) = 1/p
4. Slope of normal: -1/m = -p
5. Equation of normal: y - 2ap = -p(x - ap²)
6. Find G (y=0): -2ap = -p(x - ap²) ⇒ x = 2a + ap²
7. Thus G = (2a + ap², 0)
8. H is point where PG = GH ⇒ H = (2a + 2ap² - ap², -2ap) = (2a + ap², -2ap)
9. Verify H on y² = 4a(x-4a): (-2ap)² = 4a(2a + ap² - 4a) ⇒ 4a²p² = 4a(ap² - 2a) ⇒ ap² = ap² - 2a (Not valid)
Correction: H should be (2a + ap² + (2a + ap² - ap²), -2ap + (0 - 2ap)) = (4a + ap², -4ap)
Now check: (-4ap)² = 4a(4a + ap² - 4a) ⇒ 16a²p² = 4a²p² (Not matching)
Final Coordinates: G = (2a + ap², 0), H = (2a + 2ap², -2ap)
(d) Hyperbola asymptotes
1. Given hyperbola: 4x² - 9y² = 36 ⇒ x²/9 - y²/4 = 1
2. Standard form x²/a² - y²/b² = 1 has asymptotes y = ±(b/a)x
3. Here a=3, b=2
Final Answer: y = ±(2/3)x

2. Coordinate Transformations

(a)
(i) Polar to Cartesian
1. Polar coordinates (r,θ) = (4, π/6)
2. x = r cosθ = 4 cos(Ï€/6) = 4(√3/2) = 2√3
3. y = r sinθ = 4 sin(π/6) = 4(1/2) = 2
Final Answer: (2√3, 2)
(ii) y = x to polar
1. Substitute x = r cosθ, y = r sinθ
2. r sinθ = r cosθ ⇒ sinθ = cosθ ⇒ tanθ = 1
Final Answer: θ = Ï€/4 + kÏ€ (k ∈ ℤ)
(b) Ellipse properties
1. Points T(acosθ, bsinθ) and S(-asinθ, bcosθ)
2. OT² = a²cos²Î¸ + b²sin²Î¸
3. OS² = a²sin²Î¸ + b²cos²Î¸
4. OT² + OS² = a²(cos²Î¸ + sin²Î¸) + b²(sin²Î¸ + cos²Î¸) = a² + b²
Part (i) Proof Complete: OT² + OS² = a² + b²
5. Midpoint M: ((acosθ - asinθ)/2, (bsinθ + bcosθ)/2)
6. Let M = (X,Y): X = a(cosθ-sinθ)/2, Y = b(sinθ+cosθ)/2
7. Compute 2X²/a² + 2Y²/b² = (cosθ-sinθ)²/2 + (sinθ+cosθ)²/2
8. Expand: = [cos²Î¸ - 2sinθcosθ + sin²Î¸ + cos²Î¸ + 2sinθcosθ + sin²Î¸]/2
9. Simplify: = (2cos²Î¸ + 2sin²Î¸)/2 = 1
Part (ii) Proof Complete: Midpoint satisfies 2x²/a² + 2y²/b² = 1
(c) Parabola normal properties
1. Parabola y² = 4x, P(1,2)
2. Derivative: dy/dx = 2/y ⇒ at P, m = 1
3. Normal slope: -1 ⇒ Equation: y-2 = -1(x-1) ⇒ y = -x + 3
4. G is x-intercept (y=0): x = 3 ⇒ G(3,0)
5. D is midpoint of P(1,2) and G(3,0): D(2,1)
6. Vertical line through D: x = 2
7. Intersects parabola at T: y² = 4(2) ⇒ y = ±2√2 ⇒ T(2,2√2)
8. Directrix of y²=4x is x=-1
9. N is foot from T to directrix: N(-1,2√2)
10. TN = √[(2-(-1))² + (2√2-2√2)²] = 3
11. PG = √[(1-3)² + (2-0)²] = √8 = 2√2
Correction: The problem statement appears to have an inconsistency in the lengths
Note: There appears to be a discrepancy in the original problem statement as TN ≠ PG

3. Hyperbola and Ellipse Problems

(a) Hyperbola equation
1. Foci at (±3√5,0) ⇒ c = 3√5, c² = 45
2. For hyperbola x²/a² - y²/b² = 1, c² = a² + b²
3. Latus rectum length = 2b²/a = 8 ⇒ b² = 4a
4. Substitute: 45 = a² + 4a ⇒ a² + 4a - 45 = 0
5. Solve quadratic: a = [-4 ± √(16+180)]/2 = [-4 ± 14]/2 ⇒ a = 5 (positive)
6. Thus b² = 20, b = 2√5
Final Equation: x²/25 - y²/20 = 1
(b) Elliptical arch
1. Semi-ellipse: x²/a² + y²/b² = 1 with y ≥ 0
2. Width 8m ⇒ a = 4, height 2m ⇒ b = 2
3. Equation: x²/16 + y²/4 = 1
4. 1.5m from end ⇒ x = 4 - 1.5 = 2.5
5. Solve for y: (2.5)²/16 + y²/4 = 1 ⇒ y² = 4(1 - 6.25/16) = 4(9.75/16) = 2.4375
Final Answer: Height ≈ 1.56m
(c) Parabola properties
1. Parabola y² = 12x ⇒ 4a = 12 ⇒ a = 3
2. Focus at (a,0) = (3,0)
3. Directrix: x = -a ⇒ x = -3
4. Latus rectum length = 4a = 12
Final Answers:
(i) Focus at (3,0)
(ii) Directrix x = -3
(iii) Latus rectum = 12 units

4. Applications of Conic Sections

(a) Parabolic cable
1. Let vertex be at (0,-3), points at (-30,0) and (30,0)
2. Standard form: x² = 4py (opening upwards)
3. Shifted down: x² = 4p(y+3)
4. Passes through (30,0): 900 = 4p(3) ⇒ p = 75
Final Equation: x² = 300(y + 3)
(b) Ellipse equation
1. Standard form: x²/a² + y²/b² = 1
2. Focus at (6,0) ⇒ c = 6, c² = a² - b² ⇒ a² - b² = 36
3. Passes through (5√3,4): 75/a² + 16/b² = 1
4. Let b² = a² - 36: 75/a² + 16/(a²-36) = 1
5. Multiply through: 75(a²-36) + 16a² = a²(a²-36)
6. Expand: 75a² - 2700 + 16a² = a⁴ - 36a² ⇒ a⁴ - 127a² + 2700 = 0
7. Solve quadratic in a²: a² = [127 ± √(16129-10800)]/2 = [127 ± √2329]/2
8. a² ≈ 100 ⇒ b² ≈ 64
Final Equation: x²/100 + y²/64 = 1
(c) Hyperbola tangent/normal
1. Hyperbola x²/a² - y²/b² = 1, point P(a secθ, b tanθ)
2. Derivative: dy/dx = (b²x)/(a²y) ⇒ slope m = (b²a secθ)/(a²b tanθ) = (b/a)cosecθ
3. Tangent equation: y - b tanθ = (b/a)cosecθ(x - a secθ)
4. Simplify: (x/a)cosθ - (y/b)sinθ = 1
5. Normal equation (from 1b): a x sinθ + b y = (a² + b²)tanθ
Final Equations:
Tangent: (x/a)cosθ - (y/b)sinθ = 1
Normal: a x sinθ + b y = (a² + b²)tanθ
(d) Polar curves
(i) r² = 4 sin2θ (Lemniscate)
- Symmetric about origin and both axes
- Shaped like a figure-eight
- Maximum r = 2 at θ = π/4
(ii) r = 4 tanθ secθ
Convert: r = 4(sinθ/cosθ)(1/cosθ) = 4sinθ/cos²Î¸
r cos²Î¸ = 4 sinθ
x² = r² cos²Î¸ = r(4 sinθ) = 4y
Final Answers:
(i) Graph is a lemniscate (figure-eight)
(ii) Cartesian equation: x² = 4y

No comments

Post a Comment

© all rights reserved
made with by templateszoo