TRIGONOMETRY QUESTIONS WITH SOLUTIONS
Proof:
For any triangle ABC, A + B + C = Ï€ radians (180°).
Using sum-to-product formula:
sin2A + sin2B = 2sin(A+B)cos(A-B)
Thus:
sin2A + sin2B + sin2C = 2sin(A+B)cos(A-B) + sin2C
Since A+B = Ï€ - C ⇒ sin(A+B) = sinC
And 2C = 2Ï€ - 2(A+B) ⇒ sin2C = -sin(2A+2B)
Now:
= 2sinCcos(A-B) + 2sinCcos(A+B)
= 2sinC[cos(A-B) + cos(A+B)]
Using cosine addition:
= 2sinC[2cosAcosB] = 4sinAsinBsinC
Because cos(A-B) + cos(A+B) = 2cosAcosB
Thus proved: sin2A + sin2B + sin2C = 4sinAsinBsinC
We need to prove: (secθ + cscθ)/(1 + tanθ) = cscθ
Proof:
Convert all terms to sine and cosine:
LHS = (1/cosθ + 1/sinθ) / (1 + sinθ/cosθ)
Combine numerator:
= [(sinθ + cosθ)/(sinθcosθ)] / [(cosθ + sinθ)/cosθ]
Simplify complex fraction:
= (sinθ + cosθ)/(sinθcosθ) × cosθ/(sinθ + cosθ)
= 1/sinθ = cscθ = RHS
Thus proved.
We want to express 7sinx - 4cosx as Rsin(x - α)
Solution:
First expand Rsin(x - α):
Rsin(x - α) = Rsinxcosα - Rcosxsinα
Compare coefficients with 7sinx - 4cosx:
Rcosα = 7
Rsinα = 4
Find R:
R² = 7² + 4² = 49 + 16 = 65 ⇒ R = √65
Find α:
tanα = Rsinα/Rcosα = 4/7 ⇒ α ≈ 29.74°
Thus:
7sinx - 4cosx = √65 sin(x - 29.74°)
Where s = (a + b + c)/2 is the semi-perimeter.
Proof:
Start with the cosine half-angle formula:
cos(A/2) = √[(1 + cosA)/2]
From cosine rule: cosA = (b² + c² - a²)/2bc
Thus:
1 + cosA = 1 + (b² + c² - a²)/2bc = [2bc + b² + c² - a²]/2bc
= [(b + c)² - a²]/2bc = [(b + c + a)(b + c - a)]/2bc
Now, s = (a + b + c)/2 ⇒ 2s = a + b + c
Thus:
b + c - a = 2s - 2a = 2(s - a)
Substitute back:
1 + cosA = [2s × 2(s - a)]/2bc = 4s(s - a)/2bc = 2s(s - a)/bc
Therefore:
cos(A/2) = √[(1 + cosA)/2] = √[s(s - a)/bc]
QED.
Solution:
Given A + B = C and tanA = p tanB.
We need to find expression for sin(A - B)/sinC.
First, write sin(A - B) using sine subtraction formula:
sin(A - B) = sinAcosB - cosAsinB
And sinC = sin(A + B) = sinAcosB + cosAsinB
Thus:
sin(A - B)/sinC = [sinAcosB - cosAsinB]/[sinAcosB + cosAsinB]
Divide numerator and denominator by cosAcosB:
= [tanA - tanB]/[tanA + tanB]
Given tanA = p tanB, substitute:
= [p tanB - tanB]/[p tanB + tanB] = tanB(p - 1)/tanB(p + 1)
Simplify:
sin(A - B)/sinC = (p - 1)/(p + 1)
Solution:
Using triple angle formula:
sin3θ = sin(2θ + θ) = sin2θcosθ + cos2θsinθ
Using double angle formulas:
= (2sinθcosθ)cosθ + (1 - 2sin²Î¸)sinθ
= 2sinθcos²Î¸ + sinθ - 2sin³Î¸
Substitute cos²Î¸ = 1 - sin²Î¸:
= 2sinθ(1 - sin²Î¸) + sinθ - 2sin³Î¸
= 2sinθ - 2sin³Î¸ + sinθ - 2sin³Î¸ = 3sinθ - 4sin³Î¸
Thus: sin3θ = 3sinθ - 4sin³Î¸
Proof:
Given equations:
(1) sin⁻¹x + sin⁻¹y = Ï€/2
(2) cos⁻¹x - cos⁻¹y = 0 ⇒ cos⁻¹x = cos⁻¹y ⇒ x = y
Substitute x = y into equation (1):
2sin⁻¹x = Ï€/2 ⇒ sin⁻¹x = Ï€/4 ⇒ x = sin(Ï€/4) = 1/√2
Thus y = 1/√2 also.
But we must consider the range restrictions:
sin⁻¹x is defined for x ∈ [-1,1] and outputs ∈ [-Ï€/2, Ï€/2]
cos⁻¹x is defined for x ∈ [-1,1] and outputs ∈ [0, Ï€]
The negative solution also satisfies:
If x = y = -1/√2:
sin⁻¹(-1/√2) = -Ï€/4
-Ï€/4 + -Ï€/4 = -Ï€/2 ≠ Ï€/2 (doesn't satisfy first equation)
Thus the only solution is:
x = y = 1/√2
Key Trigonometry Concepts Covered:
- Trigonometric identities and proofs
- Sum-to-product and product-to-sum formulas
- Expression of trigonometric functions in alternative forms
- Inverse trigonometric functions
- Applications to triangles and angle relationships
No comments
Post a Comment