ADVANCED MATHEMATICS - CALCULATING DEVICES (With Marking Scheme)

Advanced Mathematics - Calculating Devices

MITIHANI POPOTE

FORM SIX TOPIC TEST

ADVANCED MATHEMATICS - CALCULATING DEVICES

1. (a) Use non-programmable scientific calculator, find the value of the following to correct four decimal places:

i. e√(log 3) + 4 log(5/√(1 + log2 3))

ii. Ï€√2 (x cos2 x)/√(1 + x2) dx

iii. ((1 + i)/(2 - 3i))10

(b) Given that:

ab = 3√((log h)½ + (4/3) loge(w/b)) × (h/(Ï€k2))

and b = limn→∞ (cosh y/ey)

Evaluate w if h = 1600, k = 0.56, a = 5060 correct to four (4) decimal places.

2. By using your non-programmable scientific calculator, evaluate each of the following:

Q. [7 ln(3.42)][42.8425]4/5 / [0.03483]3/2[11 sin-1(0.8543)]

D. tan θ = (14.32 tan 16°34′)/76.9

C. Given that:

A =

110
10-1
112
B =
1-2-1
-321
10-1
and C =
3
2
5

d. [log87.2 - ln(5√3)]2

e. (elog 3 + √(log √5))/ln 23

f. √(Ï€2 × cos-1(0)/100)

g. log817 - ln(ln(4 × 102/Ï€)/log √2)

3. (a) By using your non-programmable scientific calculator, evaluate:

i. x=26 log 3√(1 + tan-1 x) correct to 6 decimal places

ii. 7C4 + 6P4 -

7411
936
212

iii. √(3 cos 88°/(sin3(Ï€/3))2 + 4√(sin-1(0.542))) correct to 7 significant figures

(b) Using statistical mode of your non-programmable calculator, compute:

i. Mean

ii. Standard deviation

iii. Variance

Class interval 10-14 15-19 20-24 25-29
Cumulative frequency 3 4 12 16
Advanced Mathematics - Calculating Devices Solutions

MITIHANI POPOTE

FORM SIX TOPIC TEST

ADVANCED MATHEMATICS - CALCULATING DEVICES SOLUTIONS

Question 1(a)(i)

Evaluate: e√(log 3) + 4 log(5/√(1 + log2 3))

Step 1: Calculate log2 3 ≈ 1.58496
Step 2: Calculate denominator: √(1 + 1.58496) ≈ √2.58496 ≈ 1.6078
Step 3: Calculate fraction: 5/1.6078 ≈ 3.1098
Step 4: Calculate log(3.1098) ≈ 0.4928
Step 5: Multiply by 4: 4 × 0.4928 ≈ 1.9712
Step 6: Calculate log 3 ≈ 0.4771
Step 7: Calculate √0.4771 ≈ 0.6907
Step 8: Calculate e0.6907 ≈ 1.9950
Step 9: Add results: 1.9950 + 1.9712 ≈ 3.9662
Final answer: 3.9662 (to 4 decimal places)

Question 1(a)(ii)

Evaluate: ∫Ï€√2 (x cos2 x)/√(1 + x2) dx

Step 1: Recognize this requires numerical integration
Step 2: On calculator, use integration function
Step 3: Input function: (X*cos(X)^2)/√(1+X^2)
Step 4: Set lower limit: Ï€ ≈ 3.1416
Step 5: Set upper limit: √2 ≈ 1.4142
Note: Upper limit < lower limit → result will be negative
Step 6: Calculate absolute value ≈ 0.0285
Final answer: -0.0285 (to 4 decimal places)

Question 1(a)(iii)

Evaluate: ((1 + i)/(2 - 3i))10

Step 1: Convert to polar form using calculator
Step 2: Calculate numerator: 1 + i → magnitude √2, angle 45°
Step 3: Calculate denominator: 2 - 3i → magnitude √13, angle -56.31°
Step 4: Divide: (√2/√13) ≈ 0.3922, angle 45° - (-56.31°) = 101.31°
Step 5: Raise to 10th power: (0.3922)10 ≈ 8.08×10-5, angle 101.31°×10 = 1013.1°
Step 6: Reduce angle modulo 360°: 1013.1° - 2×360° = 293.1°
Step 7: Convert back to rectangular form ≈ 0.0329 - 0.0739i
Final answer: 0.0329 - 0.0739i (to 4 decimal places)

Question 2(d)

Evaluate: [log87.2 - ln(5√3)]2

Step 1: Calculate log87.2 using change of base formula: log7.2/log8 ≈ 0.9573
Step 2: Calculate 5√3 ≈ 8.6603
Step 3: Calculate ln(8.6603) ≈ 2.1589
Step 4: Subtract: 0.9573 - 2.1589 ≈ -1.2016
Step 5: Square result: (-1.2016)2 ≈ 1.4438
Final answer: 1.4438 (to 4 decimal places)

Question 3(a)(i)

Evaluate: ∑x=26 log 3√(1 + tan-1 x) correct to 6 decimal places

Step 1: Calculate each term from x=2 to 6:
x tan-1x 1 + tan-1x 3√(1 + tan-1x) log(3√)
2 1.107149 2.107149 1.283382 0.108488
3 1.249046 2.249046 1.307660 0.116479
4 1.325818 2.325818 1.324268 0.121899
5 1.373401 2.373401 1.334839 0.125457
6 1.405648 2.405648 1.341641 0.127693
Step 2: Sum the log terms: 0.108488 + 0.116479 + 0.121899 + 0.125457 + 0.127693 ≈ 0.600016
Final answer: 0.600016 (to 6 decimal places)

Question 3(b)

Using statistical mode, compute mean, standard deviation and variance for:

Class interval 10-14 15-19 20-24 25-29
Cumulative frequency 3 4 12 16
Step 1: Convert cumulative to individual frequencies:
Class 10-14 15-19 20-24 25-29
Frequency (f) 3 1 (4-3) 8 (12-4) 4 (16-12)
Midpoint (x) 12 17 22 27
Step 2: Calculate mean (μ):

μ = (3×12 + 1×17 + 8×22 + 4×27)/16 = 21.0625

Step 3: Calculate variance (σ²):

σ² = (3×(12-21.0625)² + 1×(17-21.0625)² + 8×(22-21.0625)² + 4×(27-21.0625)²)/16 ≈ 28.8086

Step 4: Calculate standard deviation (σ):

σ = √28.8086 ≈ 5.3674

Final answers:
  • Mean: 21.0625
  • Standard deviation: 5.3674
  • Variance: 28.8086

No comments

Post a Comment

© all rights reserved
made with by templateszoo