MITIHANI POPOTE
FORM SIX TOPIC TEST
ADVANCED MATHEMATICS - CALCULATING DEVICES
1. (a) Use non-programmable scientific calculator, find the value of the following to correct four decimal places:
i. e√(log 3) + 4 log(5/√(1 + log2 3))
ii. ∫Ï€√2 (x cos2 x)/√(1 + x2) dx
iii. ((1 + i)/(2 - 3i))10
(b) Given that:
ab = 3√((log h)½ + (4/3) loge(w/b)) × (h/(Ï€k2))
and b = limn→∞ (cosh y/ey)
Evaluate w if h = 1600, k = 0.56, a = 5060 correct to four (4) decimal places.
2. By using your non-programmable scientific calculator, evaluate each of the following:
Q. [7 ln(3.42)][42.8425]4/5 / [0.03483]3/2[11 sin-1(0.8543)]
D. tan θ = (14.32 tan 16°34′)/76.9
C. Given that:
A =
1 | 1 | 0 |
1 | 0 | -1 |
1 | 1 | 2 |
1 | -2 | -1 |
-3 | 2 | 1 |
1 | 0 | -1 |
3 |
2 |
5 |
d. [log87.2 - ln(5√3)]2
e. (elog 3 + √(log √5))/ln 23
f. √(Ï€2 × cos-1(0)/100)
g. log817 - ln(ln(4 × 102/Ï€)/log √2)
3. (a) By using your non-programmable scientific calculator, evaluate:
i. ∑x=26 log 3√(1 + tan-1 x) correct to 6 decimal places
ii. 7C4 + 6P4 -
7 4 11 9 3 6 2 1 2
iii. √(3 cos 88°/(sin3(Ï€/3))2 + 4√(sin-1(0.542))) correct to 7 significant figures
(b) Using statistical mode of your non-programmable calculator, compute:
i. Mean
ii. Standard deviation
iii. Variance
Class interval | 10-14 | 15-19 | 20-24 | 25-29 |
---|---|---|---|---|
Cumulative frequency | 3 | 4 | 12 | 16 |
MITIHANI POPOTE
FORM SIX TOPIC TEST
ADVANCED MATHEMATICS - CALCULATING DEVICES SOLUTIONS
Question 1(a)(i)
Evaluate: e√(log 3) + 4 log(5/√(1 + log2 3))
Question 1(a)(ii)
Evaluate: ∫Ï€√2 (x cos2 x)/√(1 + x2) dx
Question 1(a)(iii)
Evaluate: ((1 + i)/(2 - 3i))10
Question 2(d)
Evaluate: [log87.2 - ln(5√3)]2
Question 3(a)(i)
Evaluate: ∑x=26 log 3√(1 + tan-1 x) correct to 6 decimal places
x | tan-1x | 1 + tan-1x | 3√(1 + tan-1x) | log(3√) |
---|---|---|---|---|
2 | 1.107149 | 2.107149 | 1.283382 | 0.108488 |
3 | 1.249046 | 2.249046 | 1.307660 | 0.116479 |
4 | 1.325818 | 2.325818 | 1.324268 | 0.121899 |
5 | 1.373401 | 2.373401 | 1.334839 | 0.125457 |
6 | 1.405648 | 2.405648 | 1.341641 | 0.127693 |
Question 3(b)
Using statistical mode, compute mean, standard deviation and variance for:
Class interval | 10-14 | 15-19 | 20-24 | 25-29 |
---|---|---|---|---|
Cumulative frequency | 3 | 4 | 12 | 16 |
Class | 10-14 | 15-19 | 20-24 | 25-29 |
---|---|---|---|---|
Frequency (f) | 3 | 1 (4-3) | 8 (12-4) | 4 (16-12) |
Midpoint (x) | 12 | 17 | 22 | 27 |
μ = (3×12 + 1×17 + 8×22 + 4×27)/16 = 21.0625
σ² = (3×(12-21.0625)² + 1×(17-21.0625)² + 8×(22-21.0625)² + 4×(27-21.0625)²)/16 ≈ 28.8086
σ = √28.8086 ≈ 5.3674
- Mean: 21.0625
- Standard deviation: 5.3674
- Variance: 28.8086
No comments
Post a Comment