MITIHANI POPOTE EXAMINATION SERIES FORM SIX PRE NATIONAL PHYSICS 2 EXAM (With Comprehensive Solutions)

Instructions: This paper consists of six (6) questions. Answer any five (5) questions. Each question carries twenty (20) marks. Mathematical tables and non-programmable calculators may be used.

Acceleration due to gravity: \( g = 9.8 \, \text{m/s}^2 \)
Speed of sound: \( v_a = 340 \, \text{m/s} \)
Planck's constant: \( h = 6.63 \times 10^{-34} \, \text{Js} \)
Electronic charge: \( e = 1.6 \times 10^{-19} \, \text{C} \)
Avogadro's constant: \( N_A = 6.02 \times 10^{23} \, \text{mol}^{-1} \)
1 a.m.u: \( 931.5 \, \text{MeV} \)
1
Fluid Dynamics
(a) (i) Distinguish between static, dynamic, and total pressure
Solution

Static Pressure (P): The actual pressure at a point in a fluid at rest or in motion. It's the pressure measured by a sensor moving with the fluid.

Dynamic Pressure: Pressure due to fluid motion = \( \frac{1}{2} \rho v^2 \), where ρ is density and v is velocity.

Total Pressure (Stagnation Pressure): Sum of static and dynamic pressures: \( P_{\text{total}} = P + \frac{1}{2} \rho v^2 + \rho gh \).

(a) (ii) Calculate flow velocity and volume flow rate
Solution

Given: Static pressure \( P = 4.8 \times 10^4 \, \text{Pa} \), Total pressure \( P_{\text{total}} = 4.9 \times 10^4 \, \text{Pa} \), Area \( A = 120 \, \text{cm}^2 = 0.012 \, \text{m}^2 \), ρ = 1000 kg/m³.

Dynamic pressure = \( P_{\text{total}} - P = 4.9\times10^4 - 4.8\times10^4 = 1000 \, \text{Pa} \)

\( \frac{1}{2} \rho v^2 = 1000 \) ⇒ \( v^2 = \frac{2000}{1000} = 2 \)
\( v = \sqrt{2} \approx 1.414 \, \text{m/s} \)

Volume flow rate \( Q = A v = 0.012 \times 1.414 \approx 0.0170 \, \text{m}^3/\text{s} \)

Velocity ≈ 1.41 m/s, Flow rate ≈ 0.0170 m³/s
(b) (ii) Pressure drop in capillary
Solution

Given: Capillary length L = 1 mm = 0.001 m, radius r = \( 2 \times 10^{-6} \, \text{m} \), velocity v = \( 0.66 \times 10^{-3} \, \text{m/s} \), η = \( 4.0 \times 10^{-3} \, \text{Pa·s} \).

Using Poiseuille's law for flow rate: \( Q = \frac{\pi r^4 \Delta P}{8 \eta L} \)

Also \( Q = A v = \pi r^2 v \)

\( \pi r^2 v = \frac{\pi r^4 \Delta P}{8 \eta L} \) ⇒ \( \Delta P = \frac{8 \eta L v}{r^2} \)
\( \Delta P = \frac{8 \times 4.0\times10^{-3} \times 0.001 \times 0.66\times10^{-3}}{(2\times10^{-6})^2} \)
\( \Delta P = \frac{2.112\times10^{-8}}{4\times10^{-12}} = 5280 \, \text{Pa} \)
Pressure drop ≈ 5280 Pa
(c) (i) Speed of water stream striking ground
Solution

Tank: radius = 0.9 m, initial water depth = 3 m, orifice at bottom, ground distance = 6 m.

Velocity at orifice (Torricelli): \( v_0 = \sqrt{2gh} = \sqrt{2 \times 9.8 \times 3} = \sqrt{58.8} \approx 7.67 \, \text{m/s} \)

This is horizontal velocity. Vertical motion: falls 6 m from tank bottom.

Time to fall: \( t = \sqrt{\frac{2H}{g}} = \sqrt{\frac{2 \times 6}{9.8}} \approx 1.106 \, \text{s} \)

Vertical velocity at ground: \( v_y = gt = 9.8 \times 1.106 \approx 10.84 \, \text{m/s} \)

Resultant speed: \( v = \sqrt{v_0^2 + v_y^2} = \sqrt{7.67^2 + 10.84^2} \approx \sqrt{58.8 + 117.5} \approx \sqrt{176.3} \approx 13.28 \, \text{m/s} \)

Speed ≈ 13.28 m/s
(c) (ii) Time to empty tank
Solution

Tank cross-sectional area \( A_{\text{tank}} = \pi r^2 = \pi (0.9)^2 \approx 2.5447 \, \text{m}^2 \)

Orifice area \( A_{\text{orifice}} = 6.3 \, \text{cm}^2 = 6.3 \times 10^{-4} \, \text{m}^2 \)

Time to empty cylindrical tank with orifice at bottom:

\( t = \frac{A_{\text{tank}}}{A_{\text{orifice}}} \cdot \frac{\sqrt{2H_1} - \sqrt{2H_2}}{g^{1/2}} \)

Initially height \( H_1 = 3 \, \text{m} \), finally \( H_2 = 0 \).

\( t = \frac{2.5447}{6.3\times10^{-4}} \cdot \frac{\sqrt{2 \times 9.8 \times 3} - 0}{\sqrt{9.8}} \)
\( t = 4039.2 \times \frac{\sqrt{58.8}}{\sqrt{9.8}} = 4039.2 \times \sqrt{6} \approx 4039.2 \times 2.4495 \approx 9897 \, \text{s} \)
Time to empty ≈ 9897 s (≈ 2.75 hours)
2
Sound and Waves
(b) (ii) Blood flow velocity and volume rate
Solution

Given: Ultrasound frequency f₀ = 5.0 MHz = \( 5.0 \times 10^6 \, \text{Hz} \), angle θ = 30°, Doppler shift Δf = 4.4 kHz = 4400 Hz, speed of ultrasound c = 1.5 km/s = 1500 m/s, vessel diameter D = 1.0 mm = 0.001 m.

Doppler formula: \( \Delta f = \frac{2 f_0 v \cos\theta}{c} \)

\( v = \frac{\Delta f \cdot c}{2 f_0 \cos\theta} = \frac{4400 \times 1500}{2 \times 5.0\times10^6 \times \cos 30^\circ} \)
\( v = \frac{6.6\times10^6}{1.0\times10^7 \times 0.8660} \approx \frac{6.6\times10^6}{8.66\times10^6} \approx 0.762 \, \text{m/s} \)

Volume flow rate: \( Q = A v = \pi \left( \frac{D}{2} \right)^2 v = \pi (0.0005)^2 \times 0.762 \)

\( Q \approx 3.1416 \times 2.5\times10^{-7} \times 0.762 \approx 5.98 \times 10^{-7} \, \text{m}^3/\text{s} \)

Blood velocity ≈ 0.762 m/s, Flow rate ≈ 5.98×10⁻⁷ m³/s
(c) (ii) Angular separation of sodium lines
Solution

Grating: 6000 lines/cm = 600,000 lines/m, so grating spacing \( d = \frac{1}{600,000} \approx 1.667 \times 10^{-6} \, \text{m} \)

Wavelengths: λ₁ = 5890 Å = \( 5.89 \times 10^{-7} \, \text{m} \), λ₂ = 5896 Å = \( 5.896 \times 10^{-7} \, \text{m} \)

Grating equation: \( \sin\theta = \frac{m\lambda}{d} \), m = 1 (first order)

\( \sin\theta_1 = \frac{5.89\times10^{-7}}{1.667\times10^{-6}} \approx 0.3533 \) ⇒ \( \theta_1 \approx 20.69^\circ \)
\( \sin\theta_2 = \frac{5.896\times10^{-7}}{1.667\times10^{-6}} \approx 0.3537 \) ⇒ \( \theta_2 \approx 20.71^\circ \)

Angular separation Δθ = \( \theta_2 - \theta_1 \approx 0.02^\circ \)

Angular separation ≈ 0.02°
3
Surface Tension and Elasticity
(c) Radius of internal film between bubbles
Solution

Two bubbles radii: r₁ = 0.02 m, r₂ = 0.04 m, surface tension T = 0.07 N/m.

Excess pressure inside bubble 1: \( P_1 - P_0 = \frac{4T}{r_1} \)

Excess pressure inside bubble 2: \( P_2 - P_0 = \frac{4T}{r_2} \)

Since \( r_2 > r_1 \), \( P_1 > P_2 \). When they join, air flows from higher pressure (smaller bubble) to lower pressure (larger bubble).

The common interface will be concave toward the smaller bubble (higher pressure).

Pressure difference across common film: \( P_1 - P_2 = 4T \left( \frac{1}{r_1} - \frac{1}{r_2} \right) \)

For the film: \( P_1 - P_2 = \frac{4T}{r} \) where r is radius of curvature of common film.

\( \frac{4T}{r} = 4T \left( \frac{1}{r_1} - \frac{1}{r_2} \right) \) ⇒ \( \frac{1}{r} = \frac{1}{r_1} - \frac{1}{r_2} \)
\( \frac{1}{r} = \frac{1}{0.02} - \frac{1}{0.04} = 50 - 25 = 25 \) ⇒ \( r = 0.04 \, \text{m} \)

The film is concave toward the smaller bubble (sense of curvature).

Radius of common film = 0.04 m, concave toward smaller bubble
(e) (iii) Pressure to prevent expansion and lengths
Solution

Two rods: each L₀ = 1.0 m, same A, joined to make 2.0 m rod.

Rod 1: α₁ = \( 2.0 \times 10^{-5} \, /^\circ\text{C} \), Y₁ = \( 10^{10} \, \text{N/m}^2 \)

Rod 2: Values not given? Assume same or different? Problem incomplete.

If both rods have same α and Y, thermal expansion ΔL = L₀ α ΔT for each.

To prevent expansion, compressive stress σ = Y α ΔT needed.

Pressure \( P = \sigma = Y \alpha \Delta T = 10^{10} \times 2.0\times10^{-5} \times 100 = 2.0\times10^7 \, \text{Pa} \)

Without specific data for rod 2, assume similar calculation.

Pressure needed ≈ 2.0×10⁷ Pa (if both rods same)
4
Electrostatics
(a) Electric field at midpoint and nearby point
Solution

Two charges: q₁ = q₂ = 1.5 μC = \( 1.5\times10^{-6} \, \text{C} \), separation d = 30 cm = 0.3 m.

(i) At midpoint: equal distances r = 0.15 m, equal magnitude fields oppose.

\( E_1 = E_2 = \frac{k q}{r^2} = \frac{9\times10^9 \times 1.5\times10^{-6}}{(0.15)^2} = \frac{13500}{0.0225} = 6.0\times10^5 \, \text{N/C} \)

Since charges same sign, fields cancel: \( E_{\text{net}} = 0 \).

(ii) Point 10 cm from midpoint in perpendicular plane.

Distance from each charge: \( r = \sqrt{(0.15)^2 + (0.1)^2} = \sqrt{0.0225 + 0.01} = \sqrt{0.0325} \approx 0.1803 \, \text{m} \)

Field magnitude: \( E = \frac{9\times10^9 \times 1.5\times10^{-6}}{(0.1803)^2} \approx \frac{13500}{0.0325} \approx 4.154\times10^5 \, \text{N/C} \)

Vertical components cancel, horizontal components add: Each field makes angle φ where \( \cos\phi = \frac{0.15}{0.1803} \approx 0.832 \).

\( E_{\text{net}} = 2E \cos\phi = 2 \times 4.154\times10^5 \times 0.832 \approx 6.91\times10^5 \, \text{N/C} \)
(i) E = 0 at midpoint; (ii) E ≈ 6.91×10⁵ N/C away from line
(b) RC circuit charging
Solution

C = 8 μF = \( 8\times10^{-6} \, \text{F} \), R = 0.5 MΩ = \( 5\times10^5 \, \Omega \), V = 200 V.

(i) Initial current: \( I_0 = \frac{V}{R} = \frac{200}{5\times10^5} = 4.0\times10^{-4} \, \text{A} = 0.4 \, \text{mA} \)

(ii) At t = 4 s: time constant τ = RC = \( 5\times10^5 \times 8\times10^{-6} = 4 \, \text{s} \)

Current: \( I = I_0 e^{-t/\tau} = 0.4 \times e^{-1} \approx 0.4 \times 0.3679 \approx 0.147 \, \text{mA} \)

Voltage across capacitor: \( V_C = V(1 - e^{-t/\tau}) = 200(1 - e^{-1}) \approx 200 \times 0.6321 \approx 126.4 \, \text{V} \)

Initial current = 0.4 mA; After 4 s: I ≈ 0.147 mA, V_C ≈ 126.4 V
(c) Potentials and work
Solution

From diagram: A (+200 μC), B (-100 μC), distances: AD = 20 cm, DC = 60 cm, CB = 20 cm (total AB = 100 cm).

Point C: 20 cm from B, 80 cm from A.

Point D: 20 cm from A, 80 cm from B.

Potential at C: \( V_C = \frac{k q_A}{0.8} + \frac{k q_B}{0.2} = 9\times10^9 \left( \frac{200\times10^{-6}}{0.8} + \frac{-100\times10^{-6}}{0.2} \right) \)

\( V_C = 9\times10^9 (0.00025 - 0.0005) = 9\times10^9 \times (-0.00025) = -2.25\times10^6 \, \text{V} \)

Potential at D: \( V_D = \frac{k q_A}{0.2} + \frac{k q_B}{0.8} = 9\times10^9 \left( \frac{200\times10^{-6}}{0.2} + \frac{-100\times10^{-6}}{0.8} \right) \)

\( V_D = 9\times10^9 (0.001 - 0.000125) = 9\times10^9 \times 0.000875 = 7.875\times10^6 \, \text{V} \)

Work to move q = +500 μC from C to D:

\( W = q (V_D - V_C) = 500\times10^{-6} \times (7.875\times10^6 - (-2.25\times10^6)) \)
\( W = 500\times10^{-6} \times 1.0125\times10^7 = 5062.5 \, \text{J} \)
V_C ≈ -2.25×10⁶ V, V_D ≈ 7.875×10⁶ V, Work ≈ 5063 J
5
Magnetism
(a) (ii) Magnetic field at center of square and circle
Solution

Square side = 2L, current I. Distance from each side to center = L.

Field due to one straight wire at perpendicular distance L: \( B = \frac{\mu_0 I}{4\pi L} (\sin\theta_1 + \sin\theta_2) \)

For square, each side: θ₁ = θ₂ = 45°, so sin 45° = √2/2 ≈ 0.7071.

\( B_{\text{side}} = \frac{\mu_0 I}{4\pi L} (0.7071 + 0.7071) = \frac{\mu_0 I}{4\pi L} \times 1.4142 \)

Total from 4 sides: \( B_{\text{square}} = 4 \times \frac{\mu_0 I}{4\pi L} \times 1.4142 = \frac{\mu_0 I}{\pi L} \times 1.4142 \)

If reshaped into circle: circumference = 8L, so radius \( r = \frac{8L}{2\pi} = \frac{4L}{\pi} \)

Field at center of circle: \( B_{\text{circle}} = \frac{\mu_0 I}{2r} = \frac{\mu_0 I}{2 \times (4L/\pi)} = \frac{\mu_0 I \pi}{8L} \)

Compare: \( B_{\text{square}} = \frac{\mu_0 I \times 1.4142}{\pi L} \approx 0.450 \frac{\mu_0 I}{L} \)

\( B_{\text{circle}} = \frac{\mu_0 I \pi}{8L} \approx 0.393 \frac{\mu_0 I}{L} \)

Thus field decreases when reshaped to circle.

Field decreases when reshaped to circle
(b) (ii) Magnetic field on axis of coil
Solution

Circular coil: N = 120 turns, R = 0.18 m, I = 3 A, point on axis at distance x = R from center.

Field on axis: \( B = \frac{\mu_0 N I R^2}{2(R^2 + x^2)^{3/2}} \)

With x = R: \( B = \frac{\mu_0 N I R^2}{2(R^2 + R^2)^{3/2}} = \frac{\mu_0 N I R^2}{2(2R^2)^{3/2}} = \frac{\mu_0 N I R^2}{2 \times 2^{3/2} R^3} = \frac{\mu_0 N I}{4\sqrt{2} R} \)

\( B = \frac{4\pi\times10^{-7} \times 120 \times 3}{4 \times 1.4142 \times 0.18} = \frac{4\pi\times10^{-7} \times 360}{1.4142 \times 0.72} \)
\( B \approx \frac{4.5239\times10^{-4}}{1.0182} \approx 4.44 \times 10^{-4} \, \text{T} \)
Magnetic field ≈ 4.44×10⁻⁴ T
(c) (iii) Inductance of solenoid
Solution

Solenoid: diameter = 0.04 m ⇒ radius r = 0.02 m, length l = 0.6 m, N = 4000 turns.

Cross-sectional area A = πr² = π(0.02)² ≈ 0.0012566 m²

Inductance (air core): \( L = \frac{\mu_0 N^2 A}{l} = \frac{4\pi\times10^{-7} \times (4000)^2 \times 0.0012566}{0.6} \)

\( L = \frac{4\pi\times10^{-7} \times 1.6\times10^7 \times 0.0012566}{0.6} \approx \frac{25.27}{0.6} \approx 42.12 \, \text{mH} \)

With iron core μ_r = 4000: \( L_{\text{iron}} = \mu_r L_{\text{air}} = 4000 \times 0.04212 \approx 168.5 \, \text{H} \)

Air core: ≈ 42.1 mH; Iron core: ≈ 168.5 H
6
Modern Physics
(a) (iii) Age of moon rock
Solution

⁴⁰K decays to ⁴⁰Ar, half-life T_{1/2} = 1.37×10⁹ years.

Ratio K:Ar = 1:7 ⇒ For every 1 K atom, 7 Ar atoms (from decayed K).

Original K atoms = Current K + Ar = 1 + 7 = 8 atoms.

Fraction remaining = 1/8 = 0.125.

Decay law: \( N = N_0 e^{-\lambda t} \), λ = ln2 / T_{1/2}

\( 0.125 = e^{-\lambda t} \) ⇒ \( \ln(0.125) = -\lambda t \) ⇒ \( t = \frac{\ln(8)}{\lambda} = \frac{\ln(8)}{\ln(2)} \times T_{1/2} \)
\( t = 3 \times T_{1/2} = 3 \times 1.37\times10^9 = 4.11\times10^9 \, \text{years} \)
Age ≈ 4.11×10⁹ years
(a) (iv) Time for 60% decay
Solution

Half-life = 1 hour. Decay constant λ = ln2 / 1 = 0.6931 per hour.

60% decay ⇒ 40% remaining: N/N₀ = 0.4.

\( 0.4 = e^{-\lambda t} \) ⇒ \( \ln(0.4) = -0.6931 t \)
\( t = \frac{-\ln(0.4)}{0.6931} = \frac{0.9163}{0.6931} \approx 1.322 \, \text{hours} \)
Time ≈ 1.322 hours (≈ 79.3 minutes)
(d) Energy from deuterium fusion
Solution

Deuterium fusion: ²H + ²H → ³He + n (or similar). Given masses:

²H = 2.015 a.m.u, ³He = 3.017 a.m.u, n = 1.009 a.m.u.

Mass defect per fusion: 2 × 2.015 - (3.017 + 1.009) = 4.030 - 4.026 = 0.004 a.m.u.

Energy per fusion = 0.004 × 931.5 MeV = 3.726 MeV

Number of deuterium atoms in 1 kg: \( N = \frac{1000}{0.002015} \times 6.02\times10^{23} \approx 2.988\times10^{26} \)

Each fusion uses 2 deuterium nuclei, so number of fusions = N/2 ≈ 1.494×10²⁶

Total energy = 1.494×10²⁶ × 3.726 MeV = 5.566×10²⁶ MeV

In joules: 5.566×10²⁶ × 1.6×10⁻¹³ ≈ 8.906×10¹³ J

50% usable ⇒ 4.453×10¹³ J available.

Power = 1 MW = 10⁶ J/s. Time = Energy/Power = 4.453×10¹³ / 10⁶ = 4.453×10⁷ s

Days = 4.453×10⁷ / (24×3600) ≈ 515.4 days

Energy ≈ 8.91×10¹³ J; Could run 1 MW plant ≈ 515 days

Pre-National Examination Series | Physics 2 – Series 7 | Solutions

Note: These are comprehensive solutions. In the actual exam, show all working for full marks.

No comments

Post a Comment

© all rights reserved
made with by templateszoo